Synthesis and Tautomerization of 2-Nitro-1 nitrosoethylbenzene in Acetonet

Ahmad Shaabani,* Majid Ameri and Hamid Reza Bijanzadeh

Chemistry Department, Shahid Beheshti University, P.O. Box 19395-4716, Tehran, Iran

2-Nitro-1-nitrosoethylbenzene has been synthesized in fairly high yield and its tautomerization studied by ¹H NMR spectroscopy.

The reaction of dinitrogen trioxide with olefins affords 1nitro-2-nitroso derivatives, commonly referred to as pseudonitrosites 1. ¹ These adducts can be converted into the more soluble isomers, the corresponding $1,2$ -nitroximes $2^{1,2}$ Reaction of styrene with arsenic³ and concentrated nitric acid or dinitrogen trioxide^{1b} produces 2-nitro-1-nitrosoethylbenzene 3. Compound 3 is transformed easily into the more stable isomer 2-isonitroso-1-nitro-2-phenylethane 4 by boiling in ethanol.⁴ The structure of compounds 3 and 4 were earlier deduced only from their elemental analyses and for compound 4 ¹H NMR data were also reported.⁵

2-Nitro-1-nitrosoethylbenzene 3 and 2-isonitroso-1-nitrophenylethane 4 are frequently used as useful products⁶ and as versatile intermediates in organic synthesis.⁷ In addition 4 is used in analytical chemistry for indirect determination of styrene.⁸ Various approaches can lead to these compounds.
⁹ However, much demand still exists for their preparation in high yields and free of compound 4 under mild and safe conditions.

We now report a new method for the preparation of compound 3 in high yields under easy and safe conditions and deduce the essential structure of compounds 3 and 4 from their IR, 1 H, 13 C NMR and mass spectra. In addition, the tautomerization of 3 to 4 was studied by using ${}^{1}H$ NMR spectroscopy in acetone at $25-40$ °C.

For the tautomerization study a fresh sample of compound 3 was dissolved in $(CD_3)_2CO$ [0.01 g in 0.4 ml (CD_3) ₂CO in a 5 mm NMR tube] and equilibrated at the required temperature. The progress of the tautomerization was monitored by recording the appearance and disappearance of the methylene signals of 3 and 4 (Fig. 1). Integration of the area under the methylene signal of 4 with respect to that of the methylene signals of 3 gave the concentration of the species present. The rate of the reaction is given by rate = $k[3]^x$ or $k[4]^y$, where x or y is the reaction order. The integrated rate equation for a first order reaction is $ln[4]_t = -kt + ln[3]_0$.

The concentration of compound 4 at time t was found by setting the peak area for 3 equal to one and measuring the peak area of 4 relative to it. Typical data are presented in

Table 1. A plot of $ln[4]$ _t versus time should yield a straight line if the reaction is first order [see Fig. 2(a)]. The slope of this line is equal to k . The rate constants were obtained at several temperatures (298, 303 and 313 K) [Fig. 2(a)-2(d), Table 2].

By taking the natural logarithm of the Arrhenius equation, the activation energy, $E_a = 65.63 \text{ kJ mol}^{-1}$, was obtained from a plot $\ln k$ versus $1/T$. Activation parameters, $\Delta H^{\ddagger} = 57.85 \text{ kJ} \text{ mol}^{-1}$ and $\Delta S^{\ddagger} = -89.58 \text{ J K}^{-1} \text{ mol}^{-1}$, were also determined from a plot of $ln(k/T)$ versus $1/T$. The relatively low enthalpy of activation for this tautomerization suggests a mechanism which is compatible with a cyclic activated complex, in which bond making accompanies bond breaking. In addition, a negative entropy of activation, due to the loss of rotational degrees of freedom associated with the highly ordered transition state, supports this complex formation.

J. Chem. Research (S), 1998, 572-573†

^{*}To receive any correspondence.

[†]This is a Short Paper as defined in the Instructions for Authors, Section 5.0 [see *J. Chem. Research* (S) , 1998, Issue 1]; there is therefore no corresponding material in J . Chem. Research (M) .

Experimental

NMR spectra were recorded on JEOL EX 90-MHz spectrometer using tetramethylsilane as the internal standard. Temperature was calibrated by the shift difference in methanol. The temperature range was 25 to 40 °C. Infrared spectra were taken on a Shimadzu IR-470 spectrophotometer, mass spectra on a Finnigan-Matt 8430 mass spectrometer. Elemental analyses were performed with a CHN Heracus-O-Rapid analyzer.

Preparation of 2-Nitro-1-nitroseothylbenzene 3.-Sodium nitrite $(34.5 \text{ g}, 0.5 \text{ mol})$ and styrene $(20.8 \text{ g}, 0.2 \text{ mol})$ were added to chloroform (150 ml) in a 250 cm^3 two-necked round-bottomed flask equipped with condenser and dropping funnel. To this stirred mixture was added phosphoric acid $(57.6 \text{ g}, 85 \text{ wt.}\%$ solution in water; 0.5 mol) from a dropping funnel over a period of 20 min. After complete addition of phosphoric acid, the mixture was stirred for 4 h at 50 °C, then neutralized with saturated sodium bicarbonate solution. The precipitate was filtered off and washed with water (100 ml) and then n-hexane (40 ml). Compound 3 was obtained as a white solid (25.2 g, yield 70%), mp 129 °C; δ_H [90 MHz, (CD₃)₂CO] 7.60 (5 H, m, aromatic), 6.90 (1 H, dd, ³J 9.5, ³J 2.9, CH), 5.41 (1 H, dd, ²J 14.0, ³J 2.9 Hz, CH₂); δ_C [22.5 MHz, (CD₃)₂CO], 69.2 (CNO₂), 74.7 (CNO), 127.4,

Table 2 Temperature dependence of rate constants for the tautomerization of $3 \rightarrow 4$ in acetone

T/K	10^{2} k/min ⁻¹	ln(k/T)
298	1.485	-9.907
303	2.381	-9.451
308	3.509	-9.100
313	5.097	-8.800

130.0, 130.9, 135.7 (C₆H₅); $\tilde{\nu}_{\text{max}}/\text{cm}^{-1}$ 2925, 1559, 1373; M⁺ at m/z 180, C₈H₈N₂O₃ requires 180 (Found: C, 53.6; H, 4.5; N, 15.3. $C_8H_8N_2O_3$ requires C, 53.3; H, 4.4; N, 15.5%).

Preparation of 2-Isonitroso-1-nitro-2-phenylethane 4. Compound 3 was completely transformed into 4 in acetone at room temperature after about 24 h. Mp 95–96 °C; δ_H (CDCl₃) 5.6 (2 H, s, CH₂) 7.5 (5 H, m, C_6H_5), 9.3 (1 H, s, NOH exchange with D_2O); δ_C (CDCl₃) 69.9 (CNO₂), 128.0, 130.6, 131.6, 135.7 (C₆H₅), 149.3
(C=NOH); $\tilde{\nu}_{\text{max}}/\text{cm}^{-1}$ 3279, 1559, 1373.

We gratefully acknowledge financial support from the research of Shahid Beheshti University.

Received, 13th February 1998; Accepted, 28th May 1998 Paper E/8/01282B

References

- 1 (a) H. Wieland, Justus Liebigs Ann. Chem., 1920, 424, 71; (b) H. Wieland, Ber., 1903, 36, 2558; (c) D. Klamann, W. Koser, P. Weyerstahl and M. Fligge, Chem. Ber., 1965, 98, 1831; (d) L. Scheinbaum, Am. Chem. Soc., Div. Pet. Chem. Prepr., 1968, 13, 193.
- 2 M. L. Scheinbaum, J. Org. Chem., 1970, 35, 2785.
- 3 E. A. Sommer, Ber. Bunsenges. Phys. Chem., 1895, 28, 1329.
- 4 H. Wieland, Ann. N.Y. Acad. Sci., 1903, 329, 225.
- 5 M. L. Scheinbaum, J. Org. Chem., 1970, 35, 2790.
- 6 Ger. Offen., 2036681, 1971 (Chem. Abstr., 1971, 74, 99646c).
- 7 (a) U.S.S.R. Pat., 536179, 1976 (Chem. Abstr., 1977, 86, 121319v); (b) A. Kunai, T. Doi, T. Kishimoto and K. Sasaki, Chem. Express, 1990, 5, 245.
- 8 (a) G. R. Bond, Anal. Chem., 1947, 19, 390; (b) V. Sedivec and J. Flek, Collect. Czech. Chem. Commun., 1969 25, 1293.
- 9 (a) V. Novak and J. Seidl, Chem. Prum., 1978, 28, 186; (b) C. D. Hard and J. Patterson, J. Am. Chem. Soc., 1953, 75, 285.